— 2003 IMF Review

Novel Modified Zeolites for Energy-Efficient Hydrocarbon Separations

Jeff Goodwin, Gary Gray

<u>Tina M. Nenoff</u>, Mutlu Ulutagay-Kartin, Chris Cornelius, Thomas M. Anderson

June 25, 2003

— Agenda

- Team Members
- Background
- Project
 - Description and Goals
 - Milestones
 - Funding
 - Benefits
- Technical
- Summary

— Research Team

Sandia National Laboratories

Tina M. Nenoff Mutlu Ulutagay-Kartin Chris Cornelius

Goodyear Chemical
Jeff Goodwin

Gary Gray

Nofsinger

Tom Anderson Geoff Stephenson Synthesis Characterization

Pilot-Plant Testing

Process Modeling

Viable

Background/Business Case

Objective: Reduced Energy Consumption Using Membranes

Current Isoprene Monomer Technology

Potential Separation Location

— DOE/IMF Project Description & Goals

Description

Create materials for Energy Efficient HC separations

- Scientific focus on surface modified zeolites
- Enrichment / separation of isoprene from C5 stream
- Separations to provide basis of application toward other energyintensive C2-C5 separation processes

Goals

- Develop new membrane materials or separation-based adsorbents via modification of commercially-available zeolites
- Establish zeolite structure-property models for this technology & others
- Decrease energy consumption in the chemical & petroleum industries by employing these new & improved materials

—Goodyear and Sandia Project Milestones

Milestones

- Yr1: Zeolite Modification and testing; Go/No Go Initial Economic Analysis
- Yr2: Selection of "best" modified zeolite through characterization and testing; large scale synthesis
- Yr3: Pilot Plant testing, material modification; In-depth economic calculations; Engineering Analysis

— DOE/OIT/IMF Project Funding

"Novel Modified Zeolites for Energy-Efficient Hydrocarbon Separations"

Collaborative Research

198K/yr OIT/IMF "Direct to SNL"

188K/yr Goodyear "In-Kind"

10K/yr Nofsinger "In-Kind"

\$1.2M / 3yr program (FY02-04) 50% "in-kind" industry funding, commenced 4/23/2002.

Potential Benefits to Goodyear: Energy Savings

Need: Process
Improvement for
Isoprene Separation

Current Technology

Proposed Technology

Adsorption or Membrane Separation

22% Reduction in Energy

Energy Intensive

Less Energy Intensive

— Potential Energy Benefits to U.S. Chemical Industry

- Goodyear is domestic leader in isoprene production (60%).
- Economic Modeling from Nofsinger shows 22% reduction in Energy of Isoprene Process Using modified Zeolites (membranes). Goodyear saves 1 trillion Btu/yr.
- Extrapolation to C₂-C₅ industries predicts 64 Trillion BTU's savings

	Btu/yr	2002	
	Trillion	Billion lbs	Btu/lb
Ethylene- C2	214	53	4,058
Propylene-C3	53	39	1,359
Butadiene-C4	21	4	5,366
Isoprene- C5	5	0.4	8,000+
Total	293		
		22 % Paduati	010

22 % Reduction

64 Trillion Btu's

Source: CMAI - 2003

DOE/OIT Energy & Environ. Profile 2002

— Technical Section: Previous Technology Review

- Current technology energy intensive fractional and extractive distillation
- Past patent literature shows the use of activated carbon/mole sieves technology* but does not have zeolite pore selectivity properties
- Other unmodified zeolite membranes rapidly deactivate from olefin & diolefin exposure

^{*} US Patent Nos. 4,570,029 Kulprathipanja, S., UOP Inc.; 3,596,436 Dassese, P., Solvay & Cie.

— Technical Section: Separations Methodology

Sandia IP for Modified Zeolite Technology, combined leads to *enhanced* HC selectivity:

- 1) Molecular Sieving (pore size)
- 2) Adsorption Modification (surface carbonization + acidity/reactivity)
- 3) Deactivation Stabilized (high temp; multiple cycles)

—Technical Section - Zeolites for Separations

	Relative acidity	Pore diameter (Å)
Zeolite β	high	6.6 x 7.7, 5.6
Zeolite-Y	medium-high	7.4
Zeolite-L	low	7.1
ZSM-5	high	5.1 x 5.5

Zeolite-β

12 MR (3-D) straight pores

Zeolite-Y

12 MR (3-D, cages) intersecting straight pores

Zeolite-L

12 MR (1-D) straight pores

ZSM-5

10 MR (3-D)
Intersecting straight /
sinusoidal pores

—Technical Section - Zeolite Modification (Acid site deactivated & pore size modified)

- Activating Zeolite: The zeolites (crystalline molecular sieves) are regenerated at high temp to remove ancillary pore-blocking molecules.
- Bulk Carbonization: The regenerated zeolites are carbonized w/HC. hydrocarbon type/mixture, concentration, helium flow rate, exposure time, and temperature
- Temperature Programmed Desorption (TPD) Experiments: The effect of bulk carbonization on the adsorptivity of the zeolites is assessed with temperature-programmed desorption experiment.
- Separation Experiments: The carbonized zeolites are used for separation of a hydrocarbon from a hydrocarbon mixture.

— Technical Section: In-house Sandia Reactor

— Technical Section: Surface Modification

- TPD experiments show that surface modification occurs at the active sites of the interior pores.
- Zeolite Y have selective adsorption for n-Pentane but no adsorption for Isoprene

— Technical Section: Characterization Methods

- PXRD
- SEM
- pyridine-TPD
- BET

Goodyear Separation Unit

Experimental Results

Demonstrated isoprene/pentane separation using modified zeolite in dilute concentrations

Initial experiments show selectivity towards isoprene separation

— Technical Section: In-house Sandia Separation Unit

Test Unit

Test Cells

— Technical Section: Membrane Development

- •Na-Y and Na-ZSM-5 membranes have been produced
- •Surface modification of the supported membranes are under way

Crystalline Zeolite Membrane Layer (Selectively allows only specified Molecules to pass through)

Support (allows all molecules to pass)

— Technical Section: Possible Module Design

Enhanced Selectivity: Molecular Sieving + Adsorption

— Summary: CRADA 1640.01 and IMF FY02

- Leveraged successful "Proof of Concept" FY01 in CRADA 1598 to a well funded winning DOE/OIT/IMF Proposal and New CRADA 1640.01
- DOE/OIT/IMF: Goodyear, Nofsinger, Sandia; \$1.2M for 3 years; 50% industry in-kind contributions
- Economic feasibility studies completed; point to successful implementation of modified zeolites for HC separations
- Bulk modification and adsorption studies show enhancement for isoprene versus n-pentane using modified zeolites (Y).
- New work to further enhance the fundamental knowledge and skills for isoprene purification for bulk and membranes.

— Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94-AL85000.

Further Reading:

OFFICE OF INDUSTRIAL TECHNOLOGIES

http://www.oit.doe.gov/imf/factsheets/goodyr_zeolites.pdf

Supplemental Energy Benefits from IMF Project

Detailed Assumptions

- 22% Isoprene Energy Reduction
 - 1 % enrichment of isoprene which translates to 40,000,000 lbs. LESS raw materials processed to recover isoprene
- 64 Trillion Btu/yr Savings for C2-C5 Industry
 - Obtained 1997 production and energy consumption for C2-C5 industries from *DOE/OIT Energy & Environmental Profile of the U.S. Chemical Industry* -May 2000
 - Calculated Btu's/lb based on 1997 numbers
 - Multiplied Btu's/lb (1997) by 2002 estimated billion lbs/yr (CMAI) to get current C2-C4 energy consumption by process
 - Ignored energy consumption by downstream processes
 - ex. polyethylene, polypropylene, SBR, etc.